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magnets

Spin systems equipped with

Dzyaloshinsky-Moriya interaction
[Dzyaloshinsky (1958), Moriya (1960)]

¢ Many experimental realizations!

X

¢ Interesting theoretical aspects!!

Instantons in 1+1d antiferro magnet Helical/spiral phases and NG modes
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Formulation:

Background field (spurion) method
for O(3) nonlinear sigma model

@) Instantons in 1+1d antiferro magnet :

Various instanton solutions

Equivalence theorem

@) Helical/spiral phases and NG modes:

Inhomogeneous ground states
Several types of NG modes




What is interaction?

d
n J ) - ) A . -
H = § :E : 5(Sn—l—z . Sn)2—|—DZ’ . (Sn < Sn—l—z)
mn ’L:]_ - -
Dzyaloshinsky-Moriya
interaction

— ¢ Important property

Proportional to vector product!

# Increase (or decrease) S!

+» (8M)'Cs”

Anisotropic pot.
(single-ion aniso.)

# Favor inhomogeneous spin configuration!



What is interaction?

d -
H="%" %(gn” — )2 D; (8" < S| 4 (8M)tosn

n =1 *“ .

Described by bkg. SO(3) gauge field!!

— ¢ Important property

Proportional to vector product!

* Increase (or decrease) S!

# Favor inhomogeneous spin configuration!



interaction = gauge field

a - J ~n+1 AT\ 2
H:ZZ 5(3 — s")

n =1 "~

Introduce SO(3) lattice gauge field (= link variables)

#

H S\S\ n n -+ 7 A. An-|-7, o §n]2 with U(n,n+:¢) _ eiaAf;ta

n =1
N\

SO(3) gauge inv. : | $, — g(n)s,
g(n) € SO(3)] U(n,n+7Aj) — g(n)U(n,n+%)g(n+%)t

l Collect O(a?) terms by expanding w.r.t lattice spacing a
d
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interaction = gauge field

a - J ~n+1 AT\ 2
H:ZZ 5(3 — s")

n =1 "~

#

H S\S\ n n -+ 7 A. An-|-7, o §n]2 with U(n,n+:¢) _ eiaAf;ta

n =1
N\

SO(3) gauge inv. : | $, — g(n)s,
g(n) € SO(3)] U(n,n+7Aj) — g(n)U(n,n+%)g(n+%)t

l Collect O(a?) terms by expanding w.r.t lattice spacing a

! o d“ J An 41 gn n—l—z JCL 2 Am
Ho:>4>4 5(8 —8")2 + JaA, - }#—Z “ta)”S

n 1=1
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Introduce SO(3) lattice gauge field (= link variables)

1
Ay = (J@)_lquv Cor = ﬁ(Dgta)z




sigma model

d
1= L -z, (57 < a0 | + Y amyes

n =1 " - n

General anisotropic pot. C = field behaving as symmetric tensor rep.

W(n)=C —Cy — gn)W(n)g(n)*

—— & A way to describe DM int. & anisotropic pot.

Write down action with bkg. SO(3) gauge +SO(3) tensor rep. fields, and fix them as

1
AY = (Ja)'D?, W =C-Cy with Cg = 2J(D§Lta)2

! In continuum limit, spin= n% (a = 1, 2, 3) with (na)2 =1
4

Most generral effective Lagrangian at O(p?

m(n20ynt — nton? 2 2
( 01—|_ ~ ) | ];5 (aona)Z B _(Dina)Z B ﬂwabnanb

['eff — 9




of chiral magnets

d - _
L “rantit  an\2 . (am ~n—+1 AN\t /Y an
H—SJ.JQ(S §")+D,; - (8" x & )—I—E(S)CS
n =1 " - n
; Low-energy limit
m(n280n1 T nlanQ) | ft2 a\2 ? a\2 ab
L. = 3 -5 (Opn®)” — ?(Dzn )< — uW*n,ny

" D;n® = 0;n® — €% _nlAS

with <L A =(Ja) 'D% W =C-C, with Cg =

1
D%.)?
2J( (/ )

e m #0, ff =0: Ferromagnets with magnetization vector n°
e m =0, f #0: Anti-ferromagnets with Néel vector n%

em#£0,ff #0: Ferrimagnets with Néel vector n“



Outline

Formulation:

Background field (spurion) method
for O(3) nonlinear sigma model

@) Instantons in 1+1d antiferro magnet :

Various instanton solutions

Equivalence theorem

@) Helical/spiral phases and NG modes:

Inhomogeneous ground states
Several types of NG modes




spin chain

— & Effective Lagrangian Staggered mag. field

L = %(auna)Q + k(n'dyn® — n*d,n') + g[l — (n°)?] + Bn?

One-dimensional DM int. + Anisotropic pot.

¢ Classical ground state

- Daz a)2 1 — 3)\2 ]
En] :/dm (Den”) - (p— K7 (n”) - Bn”| is minimized

9 1—(n3)2 3 . « e e
if D,n*=0 (a=1,2,3) and (p— k") - Bn” is minimized
: 2 |
, : — K
" nt4in? = Ae7FT L = 5 A]? £ By/1 — |A]?
- i
L n?>=4+/1—|A]2 i Oncewe fix the parameters (u — k*, B)

we can easily find the minimizer Al



and instantons

¢ Phase diagram and order parameter manifolds
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and instantons

¢ Phase diagram and order parameter manifolds

(i) Domain-wall instanton

_~-Vortex solution

BPS solution

(1)

(a)
ricritical @
Bion solution — (II) (III) (b)(c)

. Domain-wall
solution




instanton

1 | 22
v= 2 T = Ce WP VH=KT O e

(i)

Line (a) = l r—

PQ

— o Properties
- BPS solutions obtained by Bogomorni completion!

- Helical configuration & finite instanton charge arise on domain wall!!




tical pt.
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and instantons

¢ Phase diagram and order parameter manifolds
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theorem

Q. Why we can exhaustively construct instanton solutions

A. Equivalence to the model without DM interaction!

— ¢ O(3) NLo model with DM interaction Staggered mag. field

L = %((%TLG)Q + k(n'0y,n* —n0,n') + g[l — (n°)?] + Bn?

One-dimensional DM int. + Anisotropic pot.

One-to-one correspondence with

Tll + in2 _ (ﬁl + iﬁ2)e—mx’ nS _ ﬁS

— ¢ O(3) NLo model with DM interaction Staggered mag. field
1 cay2 | M= K7 ~ 312 ~3
Lwopm = 5 (9un®)”™ + ——— |1 — (7)"|+Bn
Anisotropic potential

[cf. Kaplan-Shekhtman-Aharony-Entin-Wohlman (KSAE) int.]
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Formulation:

Background field (spurion) method
for O(3) nonlinear sigma model

@) Instantons in 1+1d antiferro magnet :

Various instanton solutions

Equivalence theorem

@) Helical/spiral phases and NG modes:

Inhomogeneous ground states
Several types of NG modes




Primer to Nambu-Goldstone mode




SSB and

¢ U(1) symmetry breaking : superfluid phonon

Energy spectrum
& # of NG modes

w = ck

Same as

number of

broken symmetries

Energy spectrum
& # of NG modes

w = ak?

Different from

number of

broken symmatries




of NG modes

Continuous @
symmetry

¢ Definition of SSB

3D, (x) satisfying (5,P;(2)) = ([iQq, Pi(2)]) # 0

Charge Q.




of NG modes

SSB of continuous symmetry

\ 4

There is a gapless NG mode




of NG modes

Continuous @
symmetry

¢ Definition of SSB

3D, (x) satisfying (5,P;(2)) = ([iQq, Pi(2)]) # 0

Charge Q.

[Hidaka (2012),
Watanabe-Murayama(2012)]

" - Type-A NG mode : ¥V Qp izowt ([iQq, Qp]) =0

¢ Classification of NG modes

< # of broken symmetries = # of NG modes with w = ck

_ - Type-B NG mode: 3Q; suchthat ([iQq, Qp]) # 0

# of broken symmetries = # of NG modes with w = ak”




NG mode

Superfluid phonon Ferromagnon

U(1) symmetry breaking O(3) symmetry breaking

Only 1 charge (abelian) (|15, Sy]> x (S;) # 0
Type-A NG mode Type-B NG mode

[Hidaka (2012),
Watanabe-Murayama(2012)]

¢ Classification of NG modes

" - Type-A NG mode : ¥V Qp izowt ([iQq, Qp]) =0

< # of broken symmetries = # of NG modes with w = ck

_ - Type-B NG mode: 3Q; suchthat ([iQq, Qp]) # 0

# of broken symmetries = # of NG modes with w = ak”




NG mode

Superfluid phonon Ferromagnon
U(1) symmetry breaking O(3) symmetry breaking
Only 1 charge (abelian) ([LSz,5y]) x (5z) # 0
Type-A NG mode Type-B NG mode
¢ Effective Lagrangian ——— [Leutwyler (1994), Watanabe-Murayama(2012)]

2
1 .

Y

~ <[i@a, Q b]> . Term peculiar to nonrelativistic system

» Unified description including Type-B NG mode




[Hidaka (2012),
Watanabe-Murayama(2012)]

¢ Classification of NG modes

" - Type-A NG mode: ¥V Qp eowt ([iQq, Qp]) =0

< # of broken symmetries = # of NG modes with w = ck

_ - Type-B NG mode : El@b such that <[i@a,QAb]>7é()

# of broken symmetries = # of NG modes with w = ak”

This is a general theorem for internal (on-site) symmetry!

What happens for NG modes associated with
spontaneous spacetime symmetry breaking?

» Let’s investigate inhomogeneous phases of chiral magnets!




Inhomogeneous phase 1: Helical phase

[uniaxial DM int. +anisotropy]




phase

— o Effective Lagrangian for uniaxial anisotropic chiral magnet

W
AY = k05, (W = —§565 : Uniaxial anisotropy
2 Anisotropic pot.
m(n?dgnt — n'togn?)  f? o [s o W
Leg = | Ogn®)* — =(0;n*—k,;ehan —(n?)?
DM interaction

Inhomogeneous ground state at tree-level

/\/1—14_12608(&-33+g5)\

n" = | —v1— A?sin(k - = + @) y
\ A ) <.
f +1 for W >0,
with A=< 0 for W <0,

arbitrary € [~1,1]  for W =0. Inhomogeneous phase at W < ()

\




in helical phase

— & Effective Lagrangian for fluctuation field {6¢, 6A} in helical phase

L 0647 + 060 + L (0.7

£ = m(1 = 5 A)050 + L [(03A)? + (030)?] —

— o Dispersion relation

: W+ (fk)?
- Antiferromagnet (f#0,m=0): “ = ﬁ‘k‘7 Y 7, )

s\k[v/ W]+ (fsk)?
- Ferromagnet (f=0,m#0) : ¥ = Felkl VW1 + (1 ),

m

y

N

( W ) T el + m* (f|kl|)’

m2+ W) fo 2/ [W(m2+ W) S
Ve Wl 2?4 (W] 2R

. A 2(m? + [W[)32 f,

+O(|k]”),

- Ferrimagnet ( f#0, m=0) : « =

+ O(k%).

All magnets show a linear isotropic dispersion relation w X ‘k|

(interpreted as a translational phonon or magnon in a rotating frame)



Inhomogeneous phase 2: Spiral phase

lisotropic DM interaction]




phase

— o Effective Lagrangian for chiral magnet with isotropic DM int.

A = —k6, MW n"n’ = — f2k%(n?)? : Isotropic DM interaction

m(n?don' — ntdyn?) N f?

Log =
ft 1+ n3 9

(Ogn®)* — %(0ina)2+f3/{2 n’(Oyn' — 0,n*) + (n°0, — n'd,)n"]

DM interaction

Inhomogeneouos ground state at tree-

Energy is minimized by

0
n® = | sin(—kz + 0)
cos(—kx + 6)

[Note. DM int. does not contributes to eom, but does to energy min. condition]



in spiral phase

— & Effective Lagrangian for fluctuation field {6¢, 6A} in spiral phase

£ =L (0000 + (@007] — £ [(0:00)2 + (@00)] - L2 50

+ mdhyo) — 2f2k sin kw §00,0€.  <—x-dependent term

— & Equation of motion
Zw?  —imw) [ 06 —V* 2K SIn KTOy \ [ 00
imw 2° 0§) —2ksin kxd, —V?*+ K? 0§)

To obtain the dispersion relation, the eigenvalue of this matrix | is needed!

» Equivalent to QM under the periodic pot. (with initernal d.o.f.)!!

Recalling BlochThm., we can solve this in the same way as the Band theory!



approximation

Eigenvalue equation: H(xz)g, (x) = Er, Gk, (x) with H(x + 27w /k) = H(x)

dk - -
1 Expand the eigenvector as Jy_ ( / = Z ellketrn)otikiys ()

- & Recurrence relations

72 ([0 + 50)% + 13 100 (k) + ke [0l (k) = 00 (R)]) = En ()0 (k)

(ko
72 (ko (k) = o (k)] + (ke + ) + 12+ 2o (k) ) = B (k) ()

By truncating the band index, we can solve the eigenvalue problem!

For example, only by considering the three band, we can reduce the problem as
E(k

(wl — ( ) —rk | 0 \ vgl)(k) |

—K)]ﬁ_ Wy — EJS;‘“) rk v(()o)(k) =0, W = (ks +nK)’+ kL + K

K 0 kk | wh, — M) v(_ll)(k)




spiral phase

15l
wlkok )10l

0.5

w(kxso)

Cos 0l0‘°'5 Ist g 0.4+
Z N \2
k. o5 N ,
k. -1.0 -0.5 0.0 0.5 1.0
— & Low-energy spectrum with anisotropy
ki 3k1

Cslkz| | 1 — | SRR if k, #0
sl 2k2  16K2|ky|2 « 70,

Cor| =—= + -+ if ky =0,

S K




spiral phase

w(kX7 k_L)

w(ky,k1)o.s |
w(0,k ;)

— & Low-energy spectrum with anisotropy

2 T ]{2 ]{4
wnzg(k):f—s 21— —= ) + %

m K2 K2




I phase

s
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1
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w(kyk1)o.5

w(kx; k_L )

ilar to the ferromag. case [

1m

- If m#0, the lowest band at small k is s

ky,0)

w(

w(kx:kJ_)

Small
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understanding

— & NG mode in helical phase

All magnets show a linear isotropic dispersion relation w o |k|

Symmetry breaking pattern: SO(2), x R* — R, x R

(NG mode = translational phonon or magnon in a rotating frame)

— & NG mode in spiral phase

Anisotropic dispersion relation + dependence on type of magnets

Symmetry breaking pattern: SO(2),,; x R? - R!
Commutator btw charges: ([iP,, p(z)])ss = —mk sin(—kz + d)

(NG modes = translational phonon and magnon)




Summary

Formulation:

Background field (spurion) method
for O(3) nonlinear sigma model

@) Instantons in 1+1d antiferro magnet :
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Equivalence theorem
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Spins on Kagome-type lattice?
[ Thermal Hall effect?]

Skyrmion current=electric current?

|Coupled dynamics with elemag?]
L

Skyrmion crystal?
IMulti-dim inhomogeneous phasej



